Efficient fast multipole method for low-frequency scattering

نویسنده

  • Eric Darve
چکیده

The solution of the Helmholtz and Maxwell equations using integral formulations requires to solve large complex linear systems. A direct solution of those problems using a Gauss elimination is practical only for very small systems with few unknowns. The use of an iterative method such as GMRES can reduce the computational expense. Most of the expense is then computing large complex matrix vector products. The cost can be further reduced by using the fast multipole method which accelerates the matrix vector product. For a linear system of size N, the use of an iterative method combined with the fast multipole method reduces the total expense of the computation to N logN . There exist two versions of the fast multipole method: one which is based on a multipole expansion of the interaction kernel exp ikr=r and which was first proposed by V. Rokhlin and another based on a plane wave expansion of the kernel, first proposed by W.C. Chew. In this paper, we propose a third approach, the stable plane wave expansion (SPW-FMM), which has a lower computational expense than the multipole expansion and does not have the accuracy and stability problems of the plane wave expansion. The computational complexity is N logN as with the other methods. 2003 Elsevier Inc. All rights reserved. AMS: 31B10; 33C10; 41A58; 42B10; 65R20; 65T20; 65Y20; 70F10; 78A45

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Interpolation of Evanescent Plane Waves for Fast Multipole Methods

One way to implement a low-frequency or broadband fast multipole method is to use the spectral representation, or inhomogeneous plane-wave expansion, of the Green’s function. To significantly improve the error-controllability of the method, we propose a new interpolation and anterpolation scheme for the evanescent part. DOI: 10.2529/PIERS060907051636 The fast multipole method (FMM) can be used ...

متن کامل

Combining analytic preconditioner and Fast Multipole Method for the 3-D Helmholtz equation

The paper presents a detailed numerical study of an iterative solution to 3-D sound-hard acoustic scattering problems at high frequency considering the Combined Field Integral Equation (CFIE). We propose a combination of an OSRC preconditioning technique and a Fast Multipole Method which leads to a fast and efficient algorithm independently of both a frequency increase and a mesh refinement. Th...

متن کامل

Fast Hybrid Algorithms for High Frequency Scattering

This paper deals with numerical methods for high frequency wave scattering. It introduces a new hybrid technique that couples a directional fast multipole method for a subsection of a scattering surface to an asymptotic formulation over the rest of the scattering domain. The directional fast multipole method is new and highly efficient for the solution of the boundary integral formulation of a ...

متن کامل

A New Guideline for the Allocation of Multipoles in the Multiple Multipole Method for Two Dimensional Scattering from Dielectrics

A new guideline for proper allocation of multipoles in the multiple multipole method (MMP) is proposed. In an ‘a posteriori’ approach, subspace fitting (SSF) is used to find the best location of multipole expansions for the two dimensional dielectric scattering problem. It is shown that the best location of multipole expansions (regarding their global approximating power) coincides with the med...

متن کامل

A wideband fast multipole method for the Helmholtz equation in three dimensions

We describe a wideband version of the Fast Multipole Method for the Helmholtz equation in three dimensions. It unifies previously existing versions of the FMM for high and low frequencies into an algorithm which is accurate and efficient for any frequency, having a CPU time of O(N) if low-frequency computations dominate, or O(N logN) if high-frequency computations dominate. The performance of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002